April 28th, 2016 ~ by admin

The Evolution of the Intel 8051 Processes

Intel C8051-3 - 1981 - Original 3.5u HMOS-E

Intel C8051-3 – 1981 – Original 3.5u HMOS

That’s not a typo, we’re going to look briefly at the technology processes (rather then the processors themselves)  Intel went through in the first 5 years of the MCS-51 microcontrollers, and the exceedingly confusing nature of the resulting naming.  When the Intel 8051 series was released in 1980 it was made on two different processes.  The 8031/8051 (non-EPROM) were made on the HMOS-I process, a 3.5 micron single poly process.

Intel C8751-8 - 1982 - Orignal 3.5u HMOS-E

Intel C8751-8 – 1982 – Orignal 3.5u HMOS-E

The EPROM version, the 8751 was made on an EPROM process, HMOS-E, which was still a 3.5 micron process, but with 2 poly layers.  This resulted in some slight differences in electrical characteristics (not to mention the programming features not needed on the MaskROM and ROMless versions.

Intel 8751H B-2 ENG. SAMPLE - 1985 -HMOSII-E - 2u

Intel 8751H B-2 ENG. SAMPLE – 1985 -HMOSII-E – 2u

Intel then moved to the HMOS-II (Intel Process P414.1) process in 1984.  This was a shrink to 2 microns, and the EPROM version was also shrunk, but again, using a slightly different EPROM process (Intel Process P421.X).  The HMOSII MaskROM and ROMless versions received the suffix AH, ‘A’ denoting a minor update to the architecture, and ‘H’ for the new HMOSII process.  The EPROM version did not see the same updates though, it received EPROM security bit support and was simply called the 8751H.

Read More »

Posted in:
CPU of the Day

April 14th, 2016 ~ by admin

DEC NVAX++ NV5: The End of VAX

DEC NVAX 21-34457-05 246B - 1992  -71MHz

DEC NVAX 21-34457-05 246B – 1992 -71MHz

About a year ago we covered the DEC RIGEL VAX Processor.  After The RIGEL DEC moved to make a single chip VAX processor that would include the CPU, FPU, and cache controller on one single die.  Work on the design began in 1987, and first silicon shipping in 1991.  Performance ended up being as good or better then the very high end VAX 9000 systems (implemented in ECL logic).

The original NVAX processor was made on a 0.75u 3-Layer CMOS process (DEC CMOS-4) and contained 1.3 million transistors in a 339 pin CPGA package.  Initial clock speed, in 1991 was 71MHz.  NVAX was then the fastest CISC processor made.  Speeds ramped up to 90.9MHz at the high end and a lower end of 62.5MHz. The first NVAX models were identified as 246B and 246C. Later versions, made well into 1996, were made on the CMOS-4S process, a 10% shrink to 0.675u and were labeled 1001C.

Internally NVAX was very familiar, the FPU was largely reused directly from RIGEL.  The NVAX also maintains the 4-phase clocking scheme from RIGEL, but moves the clock generator on chip. It also maintained the 2K of on die instruction cache from RIGEL, but added a 8K data/instruction mixed cache as well.  An L2 cache was supported in sizes of 256K 512K 1M or 2M, and located off chip.  The NVAX continued the 6-stage pipeline of RIGEL with some enhancements.  One of the greatest performance enhancements over RIGEL is the handling of pipeline stalls.  In the RIGEL pipeline, a stall in one stage would stall the entire pipe line, whereas on NVAX, in most cases, a stall in one stage does not prevent the other stages from continuing.

At nearly the same time as the development of the NVAX DEC was also developing a competitor to MIPS, a RISC architecture.  This new RISC architecture was codenamed EVAX, for Enhanced VAX, and was a purely RISC architecture that could run translated VAX CISC code with very little performance penalty.  It did however borrow from VAX, like the NVAX, EVAX used the FPU from the RIGEL. DEC went on to brand the EVAX as Alpha AXP, to separate it from the VAX line, though its internal naming of EV4, EV5 etc was left intact, as the last remnant of VAX.

DEC 2140568-02 299D NVAX++ 170.9MHz - 1996 - from a VAX7800

DEC 21-40568-02 299D NVAX++ 170.9MHz – 1996 – from a VAX7800

Having two high performance processor types at the same time left DEC in a bit of a dilemma so they created a third, known as the NVAX+ (DEC 262D).  The NVAX+ was originally made on the same CMOS-4 process as the NVAX and ran at 90.9MHz.  The NVAX+ was meant to be a bridge between the VAX line and the Alpha AXP.  It was a NVAX core, wrapped in an EVAX (Alpha AXP) external interface, it was made in the same 431PGA as the Alpha 21064 and was pin for pin compatible, the same board could be used for either.  It supported more L2 cache then the NVAX, supporting six cache sizes (4MB, 2MB, 1MB, 512KB, 256KB, 128KB),

In 1994 the NVAX+ was shrunk to the DEC CMOS-5 4-Layer 0.5 micron process resulting in the NVAX++ (DEC 299D) which ran from 133-170.9MHz.  These speeds continued to be the fastest CISC processors until Intel released the Pentium Pro at 180 and 200MHz in 1996.  Ultimately Intel’s dominance, and the coming dominance of RISC performance were the writing on the wall, and the VAX, and not long after it DEC itself were doomed to reside in the history books.  By 1997 The NVAX++ was off the market.  In 1997 the DEC Alpha team was operating out of offices owned by Intel (who also took over DEC’s fab’s), and in 1998 the remains of DEC, and the Alpha team, were bought by Compaq. And by 2004 Alpha was phased out in favor of Itanium (a now rather ironic decision by HP/Compaq).

 

Posted in:
CPU of the Day

March 24th, 2016 ~ by admin

Intel MCS-4/40 Test Boards Back in Stock and More Testers to Come

I finally got more of the Intel MCS-4/40 Test Boards ready to ship.  Grab yours soon if you want one.  All other test boards are in stock too, including the RCA COSMAC boards, the Intel MCS-8 board and the Intel MCS-80 board (with Z80 8085 and NSC800 Expansions.

New Test Boards:  Coming soon will be two new test board types.  First is a board for the SC/MP and SC/MP II CPUs made by National Semiconductor. The second is a whole test system, designed to test Motorola 680x processors as well as MOS 650x processors and many of their derivatives.  All told it’ll test over 30 different chip types!  Even some of the more unusual/special versions.  Commodore 6510? Yup! Nintendo Ricoh? Yup! and a whole lot more…

Coming Soon!

Posted in:
Products

March 13th, 2016 ~ by admin

Part 3: Vintage IC Collecting – The How.

In Part 1 of our three part series on IC collecting we discussed why to collect vintage computer chips. For Part 2 we covered what to collect, how to set and keep a focus in your collection. For the final Part we’ll cover some of the ways of how to find and collect the IC’s you want.

Part 1: Why Collect Vintage Chips?
Part 2: What Vintage Chips should I Collect?
Part 3: How do I collect Vintage IC’s?

There are two main parts of the How of IC collecting. Where to I get my chips? and Where do I put them?  For most collectors cost is a concern, for the right money you can have most any chip, but since i have yet to find the dollar/Euro/yen tree cost is a factor in acquiring chips.  One of the greatest sources of chips is eBay.  Several categories in particular are a good source of chips, IC?Processors in the Business/Industrial category, the CPU/Processors and Vintage categories in Computing, and Scrap/Recovered Gold.  Of these Scrap Gold can yield some of the most interesting chips.  Scrap sellers in general though have no idea about what they are selling (as far as collectibility) but most are happy to work with you.  If you win a lot with a nice chip in it, send the seller a note to pack the chips well, and in most cases they will.  They are sold as scrap though so keep that in mind if they don’t come in perfect shape. This can be a good chance to learn the art of pin straightening.

Read More »

March 10th, 2016 ~ by admin

Milandr K1886VE: The PIC That Went to Russia

Milandr K1886VE2U PIC17C756A w/ Flash Memory

Milandr K1886VE2U PIC17C756A w/ Flash Memory

We have previously talked about the Microchip PIC17, and its less then stellar success in the market.  After being introduced in the early 1990’s it was discontinued in the early 2000’s, though Microchip continued to provide support (and some devices) to users for some time after that.

In the early 1990’s a IC company was formed in Zelenograd, Russia (just a short distance to the NW of Moscow), the silicon valley of Russia, home to the Angstrem, and Micron IC design houses.  This company was Milandr, one of the first post-Soviet IC companies, with ambitious plans, and many highly capable engineers from the Soviet times.  They are a fabless company, though with their own packaging/test facilities, specializing in high reliability metal/ceramic packages.

The K1886VE is Milandr’s version of a PIC17C756A, though updated for the 21st century.  While mask-ROM versions are available the VE2 version replaces the ROM with modern FLASH memory.  This is a upgrade that perhaps would have kept the PIC17 alive if Microchip would have done similar.  It is packaged in a 64 pins CQFP white ceramic package with a metal lid and gold leads, not what one is use to seeing a PIC in.  Production of these PICs continues at Milandr (the pictured example is from 2012), as customers still use the parts, mainly in industrial and other places where reliability is key.

The use of a PIC in high reliability applications isn’t something entirely new.  The Microhard MHX-2400 radio system, designed for small satellites such as cubesats, runs on a PIC17C756A, a version flew on NASA’s Genesat-1 in 2006 carrying bacteria samples.  Milandr does offer radiation resistant devices so its likely that some Milandr PIC has flown to space as well.

 

March 1st, 2016 ~ by admin

Part 2: Vintage IC Collecting – The What.

Where do I start? Where do I end? Focus!

Where do I start? Where do I end? Focus!

In Part 1 of our three part series on IC collecting we discussed why to collect vintage computer chips.  For Part 2 we’ll cover what to collect. which is the most important part of collecting (not just IC’s but anything).

Part 1: Why Collect Vintage Chips?
Part 2: What Vintage Chips should I Collect?
Part 3: How do I collect Vintage IC’s?

There are millions of different IC’s made since the dawn of the IC in the 1950’s, obviously it would not be prudent to try to attempt to collect all of them, so one needs to set a focus for their collection.  The earlier this is done, the easier collecting will be, and the less chance of going insane, broke, or both.  The CPU Shack, as the name implies, began collecting just CPU’s, the brains of computers.  Through the years (and due to things being donated to the museum) this has expanded to microcontrollers, SoCs. UV-EPROMs. GPU’s, and even the occasional DSP.  It’s a broader slice of IC’s then most would want to attemp, at least when starting.  So let’s figure out ways to gain a focus in collecting.

Read More »

February 18th, 2016 ~ by admin

Part 1: Vintage IC Collecting – The Why.

First Start of IC Collecting

First Start of IC Collecting

This will be the beginning of a three part series on Vintage IC Collecting, as I get asked a lot, ‘why do you collect computer stuff?’ and How do you do it? Where do you find chips etc.

Part 1: Why Collect Vintage Chips?
Part 2: What Vintage Chips should I Collect?
Part 3: How do I collect Vintage IC’s?

These really are the fundamentals to collecting/curating anything, and are important if you wish to have any structure to your hobby of collecting.  Collecting itself seems to be built into human nature, and psychologists and evolutionary scientists have many theories as to why.. Freud, who else, claimed that people collect things due to ‘unresolved toilet training issues.’ Others see collecting as a evolutionary strength, that allowed for a better chance of survival, those that collected scarce resources, had a better chance of living to procreate.

Myself, I started collecting coins when I was young, among other things.  While scrapping out computers in High School I figured the processors should be saved, as the ‘brains’ of the computer, and thus my hobby, and the museum, began.

The Collection Progresses

The Collection Progresses

There really has become two main reasons for continuing to do so.  First, I see a need to preserve some small portion of the technology that has driven us to where we are today, and where we are going.  Second, its genuinely fun, the hunt for new chips, the research into finding where they were used, and why they were made and the camaraderie with fellow collectors.

This leads us to the Why, specifically for collecting Vintage IC’s.  Many assume that those who collect computer chips will be ‘a bunch of nerds’ and while some certainly are, there is a great variety.  Like other collecting areas, there are those who collect for economic reasons, they see a good deal, buy it, with the intent of reselling it for profit at some later date, and there is certainly nothing wrong with this.  Others have some historical connection with the chips they collect.  They may be retired Electrical/Computer Engineers, programmers and the like, that see collecting as a way to preserve some of what they did.

It gets big quickly without proper focus

It gets big quickly without proper focus

For some collecting computer chips is a matter of convenience, they have ready access to them (recycling, etc) and are drawn to the fact, that like coins, IC’s have an extrinsic value in their rarity, obscurity, or provenance, but also some intrinsic value in the precious metals they contain.  Computers chips also have the benefit that their entire history is contained in a period of time that numbers in the decades, 50 years, shorter than an average human lifetime, contains the current sum of IC history.  This can be seen to make the hobby more ‘manageable’ though we will see if Part 2, that this may not be the case.

For some, computers chips are shiny, pretty, and look ‘cool’ and thats all thats needed, they collect not for any historical, or technological reason, but for the fact that they like neat looking ‘stuff’.  Some collect very large/gold chips only for this reason, or wafers, because they are drawn first, to their beauty.
On the extreme of this is those, as a fellow collector in Romania once told me:

“Basically when I saw in the same place 3 different objects of the same type, my first thought is ” I should start a new collection”

And sometimes, that’s all it takes to get started.  Next week we will explore the What of collecting, how to determine what specific type of IC’s you want to collect, and figuring that out early is so important.

February 13th, 2016 ~ by admin

RCA CDP1855: A Multiplier for the COSMAC

RCA CDP1855CE - 3.2MHz @ 5V

RCA CDP1855CE – 3.2MHz @ 5V

In the 1970’s MULT/DIV instructions were fairly uncommon to be implemented in hardware on a processor.  They were implemented in software (usually be the compiler, or hand coded) as a series of adds and subtracts/shifts.  In some cases dedicated hardware, usually through a series of bit slice processors, or ‘181s were added to handle MULT/DIV requirements.

In 1978 RCA announced the CDP1855 Programmable Multiplier/Divider for the 1802 COSMAC processor.  Sampling began in 1979, making this one of the earliest ‘math coprocessors’ of the time.  The 1855 was an 8×8 Multiplier/Divider, handling Multiplies with Addition/Shift Right Ops, and Division using Subtractions/Shift Left Ops.  It was, like the COSMAC, made in CMOS, and at 10V ran at 6.4MHz, allowing for a 8×8 MULT to finish in 2.8us.  The CDP1855 was also designed to be cascaded with up to 3 others, providing up to a 32×32 bit multiply, in around 12usec, astonishing speed at the time.  Even the slower CDP1855CE (using a 5V supply and clocked at 3.2usec) could accomplish a full 32×32 MULT in 24usec.  An AMD AM9511 (released a year earlier) can do a 32×32 fixed point multiply in 63usec (@ 3MHz).

Soviet Integral 588VR2A - CDP1855 'Analog' from 1991

Soviet Integral 588VR2A – CDP1855 ‘Analog’ from 1991

The CDP1855 was designed to interface directly with the 1802 processor, but could be used with any other 8-bit processor as well.  It was programmable, so the host processor only needed to load with the data to be multiplied/divided, the control values ot tell it what to do, and then wait for the results.

As was typical, the Soviets made an ‘analog’ of the CDP1855 called the 588VR2 and 588VR2A.  The 588VR2 was packaged in a 24-pin package vs the 28 pins of the CDP1855, so its certainly not directly compatible.  Soviet IC design houses were instructed and paid to design and make copies of Western devices, typically original ideas were discouraged.  This led to a lot of devices being made that were similar, but not the same as their Western counterparts, the design firm could make a somewhat original device, and then simply claim to the bureaucrats that it is an ‘analog’ to a certain Western design.  Thus the 588VR2 is ‘similar’ or an ‘analog’ to the 1855.

The CDP1855 continued to be made, and sold into the late 1990s, much like the 1802 processor it supported.

 

February 8th, 2016 ~ by admin

Reverse Engineering the ARM1 Processor

VLSI VL2333-QC ARM ACORN - ARM2 (Adds MULT instruction in hardware) 1987

VLSI VL2333-QC ARM ACORN – ARM2 (Adds MULT instruction in hardware) 1987

Ken Shirriff has an interesting article on reverse engineering the original ARM1 processor (as designed by ARM, and implemented by VLSI).  He goes right to the silicon to form a transistor level model/emulator of the chip.  Back in 1986 when the ARM was designed and released, it wasn’t very well known, being used in very few devices.  This continued for over a decade surprisingly. being used in niche markets (the Apple Newton, the DEC StrongARM on RAID cards, etc).  It wasn’t until the 2000’s that this processor startup from England became the powerhouse it is today.  Two major developments drove this, mobile, and multimedia.  The ARM architecture was powerful, small, and easy on the power budget, this obviously was a benefit for mobile, but also proved very useful in dealing with multimedia processing, such as controllers on DVD players, digital picture frames, MP3 players and the like.  Today, hundreds of companies license and use the architecture and it is found in devices now numbering in the billions.

Tags:

Posted in:
Research

February 3rd, 2016 ~ by admin

The End of the Omega

ST STi5500 - The Original 50MHz Transputer based Omega

ST STi5500 – The Original 50MHz Transputer based Omega

In January ST announced that they would be exiting the Digital Set Top Box (STB) market.  This is a market that they arguably led for the last 20 years, and one that really began with their Omega processor in 1997. The ST Omega processor line, beginning with the STi5500 powered set top boxes, for cable companies, satellite companies, and DVR’s as well as other TV connected devices.  Open up a satellite TV receiver from the last 20 years and you are very likely to find a STi Omega chipset.

The STi5500 was the beginning, and interestingly at its core was a ST20 processor, based on the Inmos Transputer (which ST now owned) from the late 1980’s.  The Transputer was meant to revolutionize computing, making processors so cheap, that they could be embedded into pretty much any other logic device, what today we call an SoC, but in 1985, was a novel idea.  At the time it didn’t really succeed, but ended up seeing its intended use 10+ years later in the Omega.  In the 1980s the Transputer saw speeds of up to 30MHz, int he STi5500 it ran at 50MHz with 2K of I-cache + 2K of Data Cache as well as 2K of SRAM that could be used as data cache.

ST STi5514 - Enhanced 180MHz Omega

ST STi5514 – Enhanced 180MHz Omega

In the early 2000s the Omega was upgraded to a faster ST20 core, eventually hitting 243MHz in the STi5100, now with the caches increased to 8K each, as well as 8K of SRAM.  This was getting to be the limit of the ST20 Transputer core.  ST needed a core that could support higher speeds running such things as Java and Windows CE amongst other things, as well as support the higher resolutions and audio quality requirements.

ST handled this is in two entirely different ways.  First they licensed the SH-4 32-bit RISC core from Hitachi, a rather surprising move but STBs was not a market Hitachi was in, so it was in both companies best interest.  ST also was working on their own new core to replace the ST20, and they had help, from a very surprising partner.

Read More »