Archive for September, 2020

September 29th, 2020 ~ by admin

Aircraft Instrumentation, Bitchin’ Betty and an 80C86 CPU

F-15 with P4 Instrumentation Pod – Looks like a missile under the wing, with blue and red stripe.

Quite the combination I know, but of course all related.  Last week I got some boards in that were quite interesting.  They were all fairly early serial numbered, from the 1980s and military in design.  Now one thing about anything military is identifying it is pretty hard to do, especially when it hails from an era before the Internet.  Many records from the 1980s have made it online, but OCR and transcription errors abound, a single wrong digit can turn an item made for a A-4 Skyhawk into a new blade from a lawnmower or a shiny new Navy mess tray.

Thankfully these boards all had a CAGE code which the US uses to identify each and every supplier.  In this case that code was 94987 which is Cubic Defense.  Cubic didn’t make lawnmower blades or mess trays but they did make a lot of instrumentation systems for aircraft (and they continue to do so).

F-16 with blue training pod under its left wing)

It turns out that training fighter pilots is best done without having to use live weapons, for obvious reasons, but in all other aspects should remain as true to lifer as possible, and then be able to be analyzed after that fact in order to learn from mistakes, and see who gets bragging rights for pulling the most G’s.  This means that the aircraft has to send and receive data as it would in combat, threat warnings have to go off when targeted, missiles have to be ‘launched (while being captive) at the appropriate times, and every aspect of the flight must be recorded, speed, roll rates, altitude, etc.

Cubic made pods, that attached to one of a fighters weapon hardpoints (typically the outermost) that did exactly that.  These pods interface with the aircraft’s flight systems (using the standard 1553 bus) as well as with ground based systems on the training range, forming a complete picture of what is going on between all the aircraft taking part.  These particular boards are from Cubic’s second generation digital pods, the P4 series (the first gen was, the P3). Specifically the P4A series.  Each pod contained a vast amount of sensors, antennas and instrumentation to monitor and record what was happening, as well determine if a missile as ‘launched’ to or from the fighter.

Cubic 185200-1 with Harris ID80C86 – The brains of the AN/ASQ-T25 P4AM Training Pod

At their heart was a Harris or Intel 80C86 processor, (Harris actually did the CMOS conversion on the 8086).  This is one of the earliest applications of the CMOS 8086.  In this case the 80C86 is running off of the normal 8284A clock generator and a 13.5MHz crystal. This results in a processor frequency of 4.5MHz, a bit under its 5MHz rating.  This is pretty typical of military applications, it generates less heat, draws less power, and gives more margins.  This particular board has a industrial spec CPU, later production versions had a full military qualified part (this board was a prototype).

Read More »

September 9th, 2020 ~ by admin

Finding the Limits of the Socket 8

Socket 8 processors have something magical and I really enjoy working with them. Earlier I wrote about them more than once and it would seem that everything has already been said, but in this article you will find out which PC configuration is truly the fastest on Socket 8, although it never existed in reality. I just gave this platform what it never had, it’s like giving the first representatives of the Skylake processor architecture, which was released back in 2015, DDR5 and PCI-Express 4.0 today.

Before starting another fascinating story about Socket 8 and the processors that were installed there, I will give links to my previous experiments:

Chapter 2: Mini-Mainframe at Home: The Story of a 6-CPU Server from 1997
and what got us started…
Part 1: Mini-Mainframe at Home: The Story of a 6-CPU Server from 1997

As you can see, my close acquaintance with this socket has existed for a long time and over the past few years we have clearly managed to make friends. It would seem that all Socket 8 processors have been studied and tested in various configurations, including an insane configuration of six processors in such a monster as the ALR Revolution 6×6. But quite recently I got my hands on a motherboard made by ASUS, which gave me the opportunity to take a fresh look at the use of processors and the performance they are able to give in a newer platform.

What is this board and what chipset is it based on? To name the heroine of today’s article, I will first dwell on the main chipsets for Socket 8 processors. The first chipsets for Intel Pentium Pro processors appeared in November of 1995, 25 years ago. Already at that time, they understood that the future was behind the parallel execution of various tasks. The Intel 450KX chipset, codenamed “Mars”, was introduced for workstations, and the Intel 450GX “Orion” for servers. Mars allowed for dual-processor configurations, and the Orion officially supported up to four physical processors. Although on the example of the super-server ALR Revolution 6×6, which is based on Intel 450GX, the number of processors could have been much larger and could easily double the official figure.

Nowadays the term chipset is often associated with a single chip located on the motherboard, but when applied to the first chipsets for Intel Pentium Pro processors, we are dealing with the physical seven chips that made up the “number of special chips” or “chipset.” These chipsets supported slow FPM DRAM standard RAM, the server GX chipset could operate with 4 GB of such memory, while the KX “was content” with 1 GB support (Intel figuring a workstations needed less RAM then a server). By the standards of the second half of the 90s, these were immense volumes of RAM

In May 1996, a more progressive chipset appeared – Intel 440FX “Natoma”, which quickly began to replace older system logic sets. Intel 440FX itself already consisted of a pair of microcircuits, support for SMP, faster EDO / BEDO DRAM memory types along with the outdated FPM DRAM (though limited to 1GB max of RAM), a new version (2.1) of the PCI bus standard, as well as support for Intel Pentium-II processors were announced.

Most motherboards based on the Intel 440FX “Natoma” chipset have a physical design in the form of a Socket, where the processor was installed, but there were exceptions with a few using the new Slot 1 slot, where the first Pentium-II and Pentium Pro were installed through special slot adapters. A good example is the ASUS KN97-X motherboard with the included Socket 8->Slot 1 adapter called the ASUS C-P6S1.

ASUS KN97-X motherboard with ASUS C-P6S1 slocket adapter

Each manufacturer of such slot motherboards produced their own slot adapters, but due to their small circulation, finding them is now problematic. Socket 8 processors feel good in such adapters and the presence of a more modern infrastructure of such motherboards obviously contributes to an increase in performance. But Intel, having released the Intel 440FX chipset, decided to stop further support for its Socket 8 processors, although it could really have extended their life cycle.  Why just sell people a new motherboard chipset, when you cold ALSO force them to buy a new CPU to go in it?

Read More »

Posted in:
Boards and Systems