February 19th, 2017 ~ by admin

Milandr K1986VE91T – The ARM of Russia

Milandr K1986VE91T – 80MHz ARM Cortex-M3

In the early 1990’s a Milandr was formed in Zelenograd, Russia (just a short distance to the NW of Moscow), the silicon valley of Russia, home to the Angstrem, and Micron IC design houses. They are a fabless company, though with their own packaging/test facilities, specializing in high reliability metal/ceramic packages. Most of their products are fab’d in Germany, by X-Fab.  X-Fab was formed in part, from the remains of the Soviet/E. German era VEB Mikroelektronik Karl Marx, in Erfurt Germany, also known as FWE/MME and later Thesys.  In Soviet times it wasn’t uncommon for Soviet companies to use dies produced by FWE in their own packages, so this bit of legacy continues today.

The K1986VE91T is one of Milandr’s top end products, it is an 80MHz ARM Cortex-M3 based processor, and likely one of the largest, if not the largest, Cortex-M3 made.  It is made on a 180nm process and includes 32K RAM, 128K FlashROM, 96 USER I/O, USB, 2 UART and 12-bit DAC/ADC.  Judging by the die, the processor was built with standard licensed blocks, very common for such designs.  Milandr licensed the ARM Cortex-M3 itself in December of 2008, for use mainly in automotive and industrial applications. Milandr is also the very first Russian company to license and use an ARM core.

Analog Devices ADUCM322BBCZ ARM Cortex-M3 80MHz – Same basic core, but in a very much less appealing package

The package, however, is completely unique.  It is a 132 pin CQFP package. There are 33 gold leads on each side of the white ceramic package.  Each row is actually 2 staggered rows, the offset allows the finer lead pitch, and still room to bond the leads to the top of the package.  Soviet processors were often delivered in the most stunning of packages and 25 years later, Milandr keeps that tradition alive.

Each of these processors came with a brief datasheet, complete with inspection stamps for the processor. It is all in Russian, but check it out here.

Milandr made several variations of the Cortex-M3, including the VE92 and VE93 which are internally identical, but with much less I/O available owing to there smaller 64 pin and 48 pin packages respectively. Milandr also made a copy of the PIC17 processor that we covered last year.

A version of the K1986VExx continues to be made by Milandr, but renamed to the MDR32F9Qx.  It continues to have the same basic core, but in a 144 pin package, allowing even greater I/O support.


October 4th, 2016 ~ by admin

Testing all the ARMs

ARM946E on a Chartered Semiconductor 0.18u Process

ARM946E on a Chartered Semiconductor 0.18u Process

ARM is one of the most popular RISC cores used today, and has been for over a decade now.  ARM is an IP company. They license processor designs/architectures for others to use, but do not actually manufacturer the processors themselves….or do they?

ARM offers a variety of cores, and licenses them in a variety of different ways.  There are, in general, three main ways to get an ARM design.  Larger companies with may resources (such as Apple, Broadcom, or Qualcomm) will purchase an ARM architecture license.  This isn’t specific to any ARM core in particular (such as say a ARM946) but the entire ARM architecture, allowing these companies to design their own ARM processors from the ground up.  This takes a lot of resources and talent that many companies lack.

Second, ARM offers RTL (Register Transfer Level) processor models, these are provided in a hardware programming language such as VHDL or Verilog.  They can be dropped into a design along with other IP blocks (memory, graphics, etc) and wrapped with whatever a company needs.  This is a fairly common method, and typically the lest expensive.  It does require more work and testing though.  Designing a chip is only part of the process. Once it’s designed it still must be fab’d.

ARM7EJ-S on a TSMC 0.18u Process. Wafer #25 from June 2003

ARM7EJ-S on a TSMC 0.18u Process. Wafer #25 from June 2003

ARM also offers ARM models that are transistor level designs, pre-tested on various fab processes.  Pre-tested means exactly what it sounds like. ARM designed, built and had them manufactured, fixing any problems, and thus giving the ability to say this core will run at this speed on this fab’s process.  Testing and validation may often go as far as testing a particular fab’s particular process, in a particular package.  Its more work, and thus cost more, but these make for drop in ARM cores. Want to use a ARM946 core, on a TSMC 0.18u process in a lead free Amkor BGA package? Yah ARM’s tested that and can provide you with a design they know is compatible.  This allows extremely fast turn around from concept, to design to silicon.

In the below picture (click to enlarge) you can see a large variety of ARM cores from the early 2000’s. They span ARM7, ARM9, ARM10 and ARM11 designs.  Each is marked with info as to what exactly it is.  The core name, the revision (such as r2p0, meaning major revision 2, pass/subversion 0) as well as the Fab (TSMC, UMC, SMIC, Chartered) and the design node (all of these are either 0.18 or 0.13u processors).

21 Various ARM design tet chips from TSMC, UMC, Charted, covering many ARM cores.

21 Various ARM design tet chips from TSMC, UMC, Charted, covering many ARM cores.

Also noted on some is the exact wafer the die was cut from, this is typical on VERY early production tests, usually first run silicon, so they can identify any physical/manufacturing defects easier.  Some design modifications have little to do with the processor itself, but are done to increase yields on a given process/node.

ARM926EJ on a UMC 0.13u Process. THe package has a removable die cover.  Note the large die, thought he processor core itself is very small (its in the upper left)

ARM926EJ on a UMC 0.13u Process. 

Package type (in this case most are Amkor BGA) and other features are noted.  Many say ‘ETM’ which is ARM’s Embedded Trace Macrocell, a debugging tool that allows instruction and date traces of an in operation core, very useful for debugging. ARM offers ETM for each of their processor types (ETM9 for example covers all ARM9 type cores) and itself has a revision number as well.

Some of these chips come in an interesting BGA package. The package has a removable die cover for inspection/testing (and possibly modification). Note the large die in the ARM926EJ on the left, though the processor core itself is very small (its in the upper left only a few square mm).  This is done to facilitate bonding into the package, In this type of package there wouldn’t be any way to connect all the bonding wires to the very tiny ARM core, so the die has a lot of ‘wasted’ space on it.

So does ARM make processors? Yup! but only for internal use, to help develop the best possible IP for their clients.



Posted in:
CPU of the Day

February 8th, 2016 ~ by admin

Reverse Engineering the ARM1 Processor

VLSI VL2333-QC ARM ACORN - ARM2 (Adds MULT instruction in hardware) 1987

VLSI VL2333-QC ARM ACORN – ARM2 (Adds MULT instruction in hardware) 1987

Ken Shirriff has an interesting article on reverse engineering the original ARM1 processor (as designed by ARM, and implemented by VLSI).  He goes right to the silicon to form a transistor level model/emulator of the chip.  Back in 1986 when the ARM was designed and released, it wasn’t very well known, being used in very few devices.  This continued for over a decade surprisingly. being used in niche markets (the Apple Newton, the DEC StrongARM on RAID cards, etc).  It wasn’t until the 2000’s that this processor startup from England became the powerhouse it is today.  Two major developments drove this, mobile, and multimedia.  The ARM architecture was powerful, small, and easy on the power budget, this obviously was a benefit for mobile, but also proved very useful in dealing with multimedia processing, such as controllers on DVD players, digital picture frames, MP3 players and the like.  Today, hundreds of companies license and use the architecture and it is found in devices now numbering in the billions.


Posted in:

May 28th, 2014 ~ by admin

Intel Joins Forces with Rockchip – ARM Meets x86

rockchip logoIt’s well known that Intel missed the jump on tablet and phone processors.  Intel sold off their PXA line of ARM processors to Marvell in 2006, in an attempt to ‘get back to the basics.’  It turned out that this sale perhaps was a bit premature, as the basics ended up being mobile, and mobile is where Intel struggled (by mobile we mean phones/tablets, not laptops, which Intel has no problems with).

In January of 2011 Intel purchased the communications division of Infineon, gaining a line of application and baseband processors, based on ARM architecture of course.  Intel developed this into the SoFIA applications processor, which was ironically fab’d by TSMC.   Eventually the designs would be ported to Intel 14nm process, or that was the plan.

Intel Atom - Now by Rockchip?

Intel Atom – Now by Rockchip?

So this weeks announcement that Intel has signed an agreement with the Chinese company Rockchip, to cooperate on mobile applications processors is a bit of a surprise, but the details show that it makes sense.  Rockchips current offerings are ARM based, much as Intel’s current SoFIA processor, as well as Apple Ax series, Qualcomm’s SnapDragon, TI’s OMAP, etc. However, the agreement with Rockchip is not about ARM, its about x86.  For the first time in many years Intel has granted another company an x86 license, specifically, Intel will help ROckchip build a quad-core Atom based x86 processor with integrated 3G modem.  Rockchip currently uses TSMC as their fab, however also with this agreement Rockchip gets access to Intel 22nm and 14nm fab capacity.

Who wins?

Read More »

March 6th, 2014 ~ by admin

The Agilent ARM701 Processor

ARM 701 mis-print on the left

ARM 701 mis-print on the left

We recently received several Remote Server management cards, powered by the Agilent (spun off of HP in 1999) N2530 SoC.  This SoC provides the processing for remotely administering, and managing servers.  At its hearts is an ARM processor running at 33MHz.  Proudly marked on the chip, is ‘ARM 701 POWERED.’  There is one problem, there never was an ARM701 processor core.  The N2530 is in fact powered by an ARM710.  A typo was made when marked the Rev D chips, and later fixed on the Revision E.  I have not yet received an example of a Rev C (or earlier) to see if they too have this error, but E and later certainly did not.  The Agilent N2530 was used for many years in the early 2000’s on cards by Dell, Fujitsu, and IBM (and likely others).  Essentially forming a computer within a computer, these cards often had their own graphics support (ATI Mobility Radeon, among others) as well as support for CD-ROMs, hard drives, LAN (for access) and everything else you would find in a stand alone computer.  Typically they could remote start, reboot, and power down servers, all over a network connection.

Posted in:
CPU of the Day

February 27th, 2014 ~ by admin

The Unlikely Tale of How ARM Came to Rule the World

Bloomberg Business Week recently published an interesting article on ARM’s rise to power in the processing world.  There first major design ‘win’ was a failed product known as the Apple Newton, yet they would go on to become a powerhouse that is no challenging Intel.

In ARM’s formative years, the 1990’s, the most popular RISC processor was the MIPS architecture, which powered high end computers by SGI, while Intel made super computers (the Paragon) based on another RISC design, the i860.  Now, nearly 2 decades later, after Intel abandoned their foray into the ARM architecture (StrongARM and X-Scale) RISC is again challenging Intel in the server market, this time, led by ARM.

MIPS, now owned by Imagination, is again turning out new IP cores to compete with ARM, and other embedded cores.  Their Warrior class processors are already providing 64-bit embedded processing power, though with a lot less press that the likes of Apple’s A7.


Posted in:
Processor News

November 17th, 2013 ~ by admin

Itanium is Dead – And other Processor News

Itanium Sales Forecasts vs Reality

Itanium Sales Forecasts vs Reality

‘Itanium is dead’ is a phrase that has been used for over a decade, in fact many claimed that the Itanium experiment was dead before it even launched in 2001.  The last hold-out of the Itanium architecture was HP, likely because the Itanium had a lot in common with its own PA-RISC.  However HP has announced that they will be transitioning their NonStop sever series to x86, presumably the new 15-core Xeons Intel is developing.  Itanium was launched with goal of storming the server market, billed as the next greatest thing, it failed to make the inroads expected, largely due to the 2 decades of x86 code it didnt support, and poor initial compiler support.  Many things were learned from Itanium so though it will become but a footnote, its technology will live on.

Interestingly other architectures that seemed to be n the brink are getting continued support in new chips.  Imagination, known for their graphics IP, purchased MIPS, and now has announced the MIPS Warrior P-class core.  This core supports speeds of over 2GHz, and is the first MIPS core with 128 bit SIMD support.

Broadcom, historically a MIPS powerhouse, has announced a 64-bit ARM server class processor with speeds of up to 3GHz. Perhaps ironic that ARM is now being introduced into a market that Itanium was designed for. Broadcom has an ARM Architecture license, meaning they can roll their own designs that implement the ARM instruction set, similar to Qualcomm and several others.

POWER continues to show its remarkable flexibility.  Used by IBM in larger mainframes in the POWER7 and POWER8 implementations it crunches data at speeds up to 4.4GHz.  On the other end of the spectrum, Freescale (formerly Motorola, one of the developers of the POWER architecture) has announced the 1.8GHz quad-core QorIQ T2080 for control applications such as networking, and other embedded use.  These days the POWER architecture is not often talked about, at least in the embedded market, but it continues to soldier on and be widely used.  LSI has used it in their Fusion-MPT RAID controllers, Xilinx continues to offer it embedded in FPGAs and BAE continues to offer it in the form of the RAD750 for space-based applications.

Perhaps it is this flexibility of use that has continued to allow architectures to be used.  Itanium was very focused, and did its one job very well. Same goes for the Alpha architecture, and the Intel i860, all of which are now discontinued.  ARM, MIPS, POWER, x86 and a host of MCU architectures continue to be used because of their flexibility and large code bases.

So what architecture will be next to fall? And will a truly new architecture be introduced that has the power and flexibility to stick around?

September 3rd, 2013 ~ by admin

ARCA: The Processor that came from the East

Arca-1 Rev2 166Mhz - Late 2001

Arca-1 Rev2 166Mhz Processor – Late 2001

China is generally seen as where devices are made or assembled, rather then where they are designed or invented, certainly in the computer world.  In 2001 a Chinese Gov’t funded venture known as ARCA Technologies changed that.  ARCA (Advanced RISC Computer Architecture) designed and released a completely new processor known as the Arca-1.  At the time there were two design houses working to create China’s first CPU. Arca, and BLX.  BLX made the Godson series of processors which are MIPS32 and MIPS64 implementations.  Arca, took a different approach.  Not only did they seek to make an indigenous design, but they wanted to do so with their own Instruction Set Architecture (ISA).

The ArcaISA is, of course, RISC based, it contains 80 instructions, with each instruction consisting of up to 3 operands, and contains 32 general purpose registers.  The original Arca-1 design is made on a 0.25 micron process (by which foundry is unclear, BLX used ST) with a 5-stage pipeline and drawing 1.2W at a clock speed of 166MHz.  It contained separate 32 way associative 8K caches for Instruction and Data.  The Arca also includes a DSP unit that has a pair of multiply/Accumulate Units (MACs) as well as basic SIMD support for media acceleration (including hardware MPEG2).   Not exactly impressive for 2001, but not bad for a first release.  However there was more to come.

Read More »

Posted in:
CPU of the Day

October 8th, 2012 ~ by admin

Apple A6 vs Rockchip RK3066: 4 Years vs. 6 weeks of design

The introduction of the iPhone 5 was also the introduction of Apple’s first truly original Application Processor design.  The iPhone 2, 3G and 3GS all featured designs by Samsung.  The iPhone 4 introduced the A4, which was closely based on the Hummingbird Cortex-A8 core developed with Samsung and Intrinsity, again, not a truly Apple design.  The iPhone 4S introduced the A5 (and the A5X used in the iPad 2).  The A5 is based on the ARM Cortex-A9 MPCore, a standard ARM design, albeit with many added features, but architecturally, the processor is not original, just customized.

ARM provides cores designs for use by developers, such as the Cortex-A9, A8, etc.  These are complete designs of processors that you can drop into your system design as a block, add your own functions, such as a graphics system, audio processing, image handling, radio control, etc and you have your processor.  This is the way many processor vendors go about things.  They do not have to spend the time and effort to design a processor core, just pick one that meets their needs (power budget, speed, die area) and add any peripherals   Many of these peripherals are also licensed as Intellectual Property (IP) blocks making building a processor in some ways similar to construction with Legos.  This is not to say that this is easy, or the wrong way to go about things, it is in fact the only way to get a design to market in a matter of weeks, rather then years.  It allows for a wide product portfolio that can meet many customers needs.  The blocks are often offered for a specific process, so not only can you purchase a license to a Cortex-A9 MPCore, you can purchase one that is hardware ready for a TSMC 32nm High-k Metal Gate process, or a 28nm Global Foundries process.  This greatly reduces the amount of work needed to make a design work with a chosen process. This is what ARM calls the Processor Foundry Program.

Read More »

Posted in:

September 6th, 2012 ~ by admin

Apple iPhone Update: Whats changed since the iPhone 4

Back in 2010 we did a write up on the many processors in each iPhone for each version through the iPhone 4.  Since then Apple has released the iPhone 4 (CDMA) and the mid-cycle refresh iPhone 4S.  Seeing as the iPhone 5 should be released on September 12th here is a quick update to bring our table up to date.

CPUs by function and generation of iPhone:

Function 2G 3G 3GS 4 4-CDMA 4S
App Processor Samsung S3C6400 400-412MHz ARM1176JZ Samsung S3C6400 400-412MHz ARM1176JZ Samsung S5PC100 600MHZ ARM Cortex A8 Apple A4 800MHz ARM Cortex A8 Apple A4 800MHz ARM Cortex A8 Apple A5 900Mhz Dual core ARM Cortex-A9
Baseband S-GOLD2 ARM926EJ-S <200MHz Infineon X-Gold 608 ARM926 312MHz + ARM7TDMI-S Infineon X-Gold 608 ARM926 312MHz + ARM7TDMI-S X-Gold 618 ARM1176 416MHz Qualcomm MDM6600 ARM1136JS 512MHz Qualcomm MDM6610 ARM1136JS 512MHz
GPS NA Infineon HammerHead II Infineon  HammerHead II BCM4750 (no CPU core) see above see above
Bluetooth BlueCore XA-RISC BlueCore XA-RISC BCM4325 (2 CPU cores) BCM4329 (2 CPU cores) BCM4329 (2 CPU Cores) BCM4330ARM Cortex-M3 + Bluetooth CPU
Wifi Marvell 88W8686 Feroceon ARMv5 128MHz Marvell 88W8686 Feroceon ARMv5 128MHz see above see above see above see above
TouchScreen Multi-chip BCM5974 TI TI TI TI
OS Nucleus by Mentor Graphics Nucleus Nucleus ThreadX by ExpressLogic REX by Qualcomm REX by Qualcomm
Total Cores 5 7 7 5 5 6

Apple iPhone 4 CDMA

The CDMA version of the iPhone 4 switched from an Infineon X-Gold baseband to a Qualcomm MDM6600 running a 512MHz ARM1136JS core.  Interestingly this baseband supports GSM but due to antenna issues it is not implemented here. The Qualcomm Gobi, as it is known, also has integrated GPS, removing the need for the old Broadcom BCM4750.  This sets the stage for the iPhone 4S.

Read More »